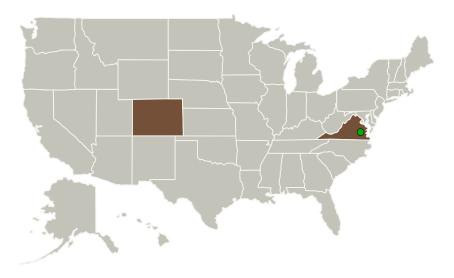
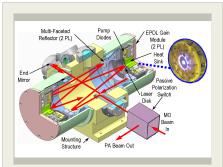
# Blue Laser Based on Frequency-Quadrupled Tm:Lu2O3, Phase I




Completed Technology Project (2016 - 2016)


### **Project Introduction**

Aqwest proposes to develop a novel, compact and rugged high-peak power blue laser in the 0.45-0.49 m range. The innovative blue laser is based on a frequency-quadrupling of 1.9-µm laser output from ceramic Tm:Lu2O3, a novel high-performance solid-state laser (SSL) material that is new becoming commercially available. The project will adapt our novel and highly successful edge-pumped disk laser / multi-passed amplifier architecture we developed for the US Army, Navy, and the Department of Energy (DOE). In Phase I, we will use our existing suite of Tm laser models to determine the feasibility of the subject blue laser and identify preferred operating regimes. We will also fabricate a composite Tm:Lu2O3 laser disk using the ceramic material now being produced for Aqwest, and laser test it under relevant condition in our existing test bed to characterize performance at 1.9-µm wavelength. In Phase II, we will develop and demonstrate a full-scale blue laser prototype.

### **Primary U.S. Work Locations and Key Partners**



| Organizations<br>Performing Work | Role                       | Туре           | Location              |
|----------------------------------|----------------------------|----------------|-----------------------|
| Aqwest, LLC                      | Lead<br>Organization       | Industry       | Larkspur,<br>Colorado |
| Langley Research Center(LaRC)    | Supporting<br>Organization | NASA<br>Center | Hampton,<br>Virginia  |



Blue Laser Based on Frequency-Quadrupled Tm:Lu2O3, Phase I

### **Table of Contents**

| Project Introduction          |   |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           |   |
| Images                        | 2 |
| Organizational Responsibility |   |
| Project Management            |   |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              |   |
| Target Destinations           |   |



### Small Business Innovation Research/Small Business Tech Transfer

# Blue Laser Based on Frequency-Quadrupled Tm:Lu2O3, Phase I



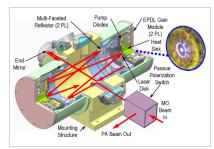
Completed Technology Project (2016 - 2016)

| Primary U.S. Work Locations |          |  |
|-----------------------------|----------|--|
| Colorado                    | Virginia |  |

# **Project Transitions**

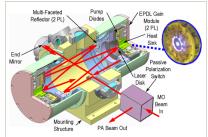
0

June 2016: Project Start




December 2016: Closed out

#### **Closeout Documentation:**


• Final Summary Chart(https://techport.nasa.gov/file/140375)

### **Images**



# Briefing Chart Image

Blue Laser Based on Frequency-Quadrupled Tm:Lu2O3, Phase I (https://techport.nasa.gov/imag e/135739)



### **Final Summary Chart Image**

Blue Laser Based on Frequency-Quadrupled Tm:Lu2O3, Phase I Project Image (https://techport.nasa.gov/imag e/127547)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

### **Lead Organization:**

Aqwest, LLC

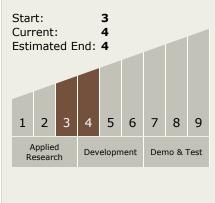
### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

# **Project Management**

### **Program Director:**

Jason L Kessler


### **Program Manager:**

Carlos Torrez

### **Principal Investigator:**

John Vetrovec

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Blue Laser Based on Frequency-Quadrupled Tm:Lu2O3, Phase I



Completed Technology Project (2016 - 2016)

# **Technology Areas**

### **Primary:**

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

